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PACS numbe(s): 05.20.Dd

A molecular gas at low density is well described by thewhere the right side is an approximate representation of the
Boltzmann equation, but its complexity prohibits a transpar-Boltzmann collision operator for competition between scat-
ent characterization of its solutions or their properties. His+tering into and out of the velocity state, It depends on two
torically, kinetic models have been used to provide access tRee quantities: an effective collision frequengyand a func-
such solutions and their context. Model kinetic equations argion f(r,v,t|f), which is a functional of the distribution
obtained by replacing the Boltzmann operalpf,f] with @  fynction through the constraints that the model kinetic equa-

simpler, more tractable form that preserves its most imporgon yield exactly the same balance equations as the Boltz-
tant features(e.g., conservation laws Within such con- a0, equation:

straints there is the flexibility to emphasize simplicity or ac-

curacy, depending on the objectives of its use. Most 1

knowledge of transport outside linear response and for

boundary driven states has been obtained in this wayl]in J’ dv

we extended this approach of kinetic modelling to explore 1

the nature of solutions to the Boltzmann equation for inelas- Emv

tic collisions. Our objective was to address fundamental

guestions associated with the derivation of fluid dynamics 0

from a more fundamental basis in a kinetic theory. Such 0

guestions arise because the energy is no longer a conserved - ' 2

hydrodynamic field, and the reference state about which spa- (1—€*)(w/Q)

tial variations are measured is not local equilibrium, but

rather an unknown time dependent cooling stdte homo- The term on the right side of this equation proportional to

geneous cooling state HE:3n short, we addressed the ques- (1— €?) represents the energy loss due to the inelastic colli-

tion of how inelasticity affects the derivation, form, and va- sions, where is the restitution coefficient and is a bilinear

lidity of fluid dynamics equations. From the chosen kineticfunctional known from the Boltzmann equation. A primary

equation an exact solution was obtained for the HCS stategffect of inelastic collisions is the violation of detailed bal-

and the exact solution for small inhomogeneities was obance, implying that there is no longer an evolution toward a

tained through first order in the spatial gradients. The charlocal Maxwellian. This violation of detailed balance as-

acterization in the Comment on our recent papkf by  suredfor the kinetic model by constrairi2), and the model

Goldshtein and Shapirf®2] of our treatment as “incorrect” kinetic equation agreesxactlywith the Boltzmann equation

and “inconsistent” certainly cannot apply to this analysis. in the subspace spanned by\2?). This defines a class of

Instead, they question the general validity of using a relaxmodel kinetic equations, since the constraints do not

ation kinetic model for granular flow. Their primary basis for uniquely determine y(r,v,t|f). The choice in Ref[1] is a

this position is that the kinetic model used in Rgf] pre-  Gaussian with parameters determined by &,

dicted a homogeneous solution with a divergent fourth mo-

ment, while a calculation based on the Boltzmann equation

indicates it is finite. In the following, we show below that fo(r,v,t

this feature of the Boltzmann equation is reproduced by the

kinetic model equation if the two adjustable constants are X @ Mv=u(r,bl2kgT(r,HA ©)

chosen to match the corresponding viscosity and cooling rate

for the Boltzmann equation. Consequently, the only substan- 2w

tive argument against the kinetic model is removed. A=1-c¢(1-€?), c= INKTZ
Our chosen model kinetic equation for the distribution B¢

function f(r,v,t) has the form

f(r,v,t)—fo(r,v,t|f)]
2

m 3/2
27kgT(r,0A

f)=n(r,t)

4

The functionsn(r,t), T(r,t), andu(r,t) are the local den-
(O+v-V)E(r,v,t)=J[f,f]——Z[f(r,v,t) —fo(r,v,t|f)], sity, temperature, and flow velocity which are defined as for
(1) a normal gas via moments bf The appearance of the factor
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A is due to constraint2), and represents the violation of for the physical properties of interegiarticularly hydrody-
detailed balance. The extent of the violation is measured byamics, which are equations for moments of dege®).
the ratio of the mean free time to the cooling timg1  More detailed analysis shows that the distribution function
—€?), wherec is a numerical constant. As expected, noremains close to Maxwellian in this case for velocities up to
stationary solution td —fo(r,v,t|/f)=0 exists except foe  five times the half-width, at which the value bfs ~10" 1%,
=1. However, a time dependent homogeneous scaling soldrhe enhanced probability occurs only for unphysical values
tion does exist and was determined exactly in Ref.using  of the velocity, having no effect on practical applications of
c=1 for simplicity (see the Comment following E4A13) the model. The reason for this feature of the kinetic model is
in Ref. [1]). If, instead,w is estimated from the Boltzmann easily traced to collapse of the Boltzmann spectrum for very
equation for local equilibrium and is determined from the rapidly decaying modes to the single common vajua the
Boltzmann equation viscosity, then a valueat 3 is ob-  kinetic model. This can be corrected, e.g., by a velocity de-
tained. This makes no change in the resultgldfexcept that  pendent collision frequency, but at the price of complicating
the dependence on the restitution coefficient is now obtainethe kinetic model considerably for limited gain.
by replacing + € by 3(1—€?) everywhere. The fourth In summary, we maintain that simple kinetic models for
moment of the distribution function is then finite for &l  granular media are both physically acceptable and useful in
and very close to the value from the Boltzmann equation. practice. For example, their recent application to shear flow
While this removes the specific concern of Rf], it is  far from equilibrium has shown excellent agreement with
possible to insist that problems remain since moments o$imulation of the Boltzmann equation for rheological prop-
higher degree still diverge. This is in fact the case, with theerties, and good agreement for the distribution function as
divergence occurring for degree=2[c(1—€?)], a signa- well [3]. Theoretical analysis of such complex states based
ture that the distribution function has an enhanced probabilen the Boltzmann equation has not been possible to date.
ity (relative to a Maxwelliapfor large velocities. However, Kinetic models provide direct access to otherwise difficult or
for a reasonable value of dissipatioes=0.9, the smallest intractable problems, and therefore justify reasonable com-
moment to diverge is fon= 26, which is clearly not relevant promises in detailed accuracy.
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