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The use of simple relaxation kinetic models for granular media is defended@see preceding Comment by
Goldshtein and Shapiro, Phys. Rev. E57, 6210~1998!#. @S1063-651X~98!11004-8#
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A molecular gas at low density is well described by t
Boltzmann equation, but its complexity prohibits a transp
ent characterization of its solutions or their properties. H
torically, kinetic models have been used to provide acces
such solutions and their context. Model kinetic equations
obtained by replacing the Boltzmann operatorJ@ f , f # with a
simpler, more tractable form that preserves its most imp
tant features~e.g., conservation laws!. Within such con-
straints there is the flexibility to emphasize simplicity or a
curacy, depending on the objectives of its use. M
knowledge of transport outside linear response and
boundary driven states has been obtained in this way. In@1#
we extended this approach of kinetic modelling to explo
the nature of solutions to the Boltzmann equation for inel
tic collisions. Our objective was to address fundamen
questions associated with the derivation of fluid dynam
from a more fundamental basis in a kinetic theory. Su
questions arise because the energy is no longer a conse
hydrodynamic field, and the reference state about which s
tial variations are measured is not local equilibrium, b
rather an unknown time dependent cooling state~the homo-
geneous cooling state HCS!. In short, we addressed the que
tion of how inelasticity affects the derivation, form, and v
lidity of fluid dynamics equations. From the chosen kine
equation an exact solution was obtained for the HCS st
and the exact solution for small inhomogeneities was
tained through first order in the spatial gradients. The ch
acterization in the Comment on our recent paper@1# by
Goldshtein and Shapiro@2# of our treatment as ‘‘incorrect’’
and ‘‘inconsistent’’ certainly cannot apply to this analys
Instead, they question the general validity of using a rel
ation kinetic model for granular flow. Their primary basis f
this position is that the kinetic model used in Ref.@1# pre-
dicted a homogeneous solution with a divergent fourth m
ment, while a calculation based on the Boltzmann equa
indicates it is finite. In the following, we show below th
this feature of the Boltzmann equation is reproduced by
kinetic model equation if the two adjustable constants
chosen to match the corresponding viscosity and cooling
for the Boltzmann equation. Consequently, the only subs
tive argument against the kinetic model is removed.

Our chosen model kinetic equation for the distributi
function f (r ,v,t) has the form

~] t1v•¹! f ~r ,v,t !5J@ f , f #→2z@ f ~r ,v,t !2 f 0~r ,v,tu f !#,
~1!
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where the right side is an approximate representation of
Boltzmann collision operator for competition between sc
tering into and out of the velocity state,v. It depends on two
free quantities: an effective collision frequencyz and a func-
tion f 0(r ,v,tu f ), which is a functional of the distribution
function through the constraints that the model kinetic eq
tion yield exactly the same balance equations as the Bo
mann equation:

E dvS 1

v

1

2
mv2

D z@ f ~r ,v,t !2 f 0~r ,v,tu f !#

5S 0

0

~12e2!~w/z!
D . ~2!

The term on the right side of this equation proportional
(12e2) represents the energy loss due to the inelastic co
sions, wheree is the restitution coefficient andw is a bilinear
functional known from the Boltzmann equation. A prima
effect of inelastic collisions is the violation of detailed ba
ance, implying that there is no longer an evolution toward
local Maxwellian. This violation of detailed balance isas-
suredfor the kinetic model by constraint~2!, and the model
kinetic equation agreesexactlywith the Boltzmann equation
in the subspace spanned by (1,v,v2). This defines a class o
model kinetic equations, since the constraints do
uniquely determinef 0(r ,v,tu f ). The choice in Ref.@1# is a
Gaussian with parameters determined by Eq.~2!,

f 0~r ,v,tu f !5n~r ,t !S m

2pkBT~r ,t !D D 3/2

3e2m[v2u~r ,t !]/2kBT~r ,t !D, ~3!

D[12c~12e2!, c5
2w

3nkBTz
. ~4!

The functionsn(r ,t), T(r ,t), and u(r ,t) are the local den-
sity, temperature, and flow velocity which are defined as
a normal gas via moments off . The appearance of the facto
6212 © 1998 The American Physical Society
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D is due to constraint~2!, and represents the violation o
detailed balance. The extent of the violation is measured
the ratio of the mean free time to the cooling time,c(1
2e2), where c is a numerical constant. As expected,
stationary solution tof 2 f 0(r ,v,tu f )50 exists except fore
51. However, a time dependent homogeneous scaling s
tion does exist and was determined exactly in Ref.@1# using
c51 for simplicity ~see the Comment following Eq.~A13!
in Ref. @1#!. If, instead,w is estimated from the Boltzman
equation for local equilibrium andz is determined from the
Boltzmann equation viscosity, then a value ofc5 5

12 is ob-
tained. This makes no change in the results of@1# except that
the dependence on the restitution coefficient is now obtai
by replacing 12e2 by 5

12 (12e2) everywhere. The fourth
moment of the distribution function is then finite for alle,
and very close to the value from the Boltzmann equation

While this removes the specific concern of Ref.@2#, it is
possible to insist that problems remain since moments
higher degree still diverge. This is in fact the case, with
divergence occurring for degreen>2/@c(12e2)#, a signa-
ture that the distribution function has an enhanced proba
ity ~relative to a Maxwellian! for large velocities. However
for a reasonable value of dissipation,e50.9, the smallest
moment to diverge is forn526, which is clearly not relevan
.
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for the physical properties of interest~particularly hydrody-
namics, which are equations for moments of degree<2).
More detailed analysis shows that the distribution funct
remains close to Maxwellian in this case for velocities up
five times the half-width, at which the value off is ;10211.
The enhanced probability occurs only for unphysical valu
of the velocity, having no effect on practical applications
the model. The reason for this feature of the kinetic mode
easily traced to collapse of the Boltzmann spectrum for v
rapidly decaying modes to the single common valuez in the
kinetic model. This can be corrected, e.g., by a velocity
pendent collision frequency, but at the price of complicati
the kinetic model considerably for limited gain.

In summary, we maintain that simple kinetic models f
granular media are both physically acceptable and usefu
practice. For example, their recent application to shear fl
far from equilibrium has shown excellent agreement w
simulation of the Boltzmann equation for rheological pro
erties, and good agreement for the distribution function
well @3#. Theoretical analysis of such complex states ba
on the Boltzmann equation has not been possible to d
Kinetic models provide direct access to otherwise difficult
intractable problems, and therefore justify reasonable co
promises in detailed accuracy.
. E
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